Introduction to R

Rob Williams
UNC-CH Political Science

January 15, 2019

Overview

- Textbook
- Can download chapters 1 and 2 from http://qss.princeton.press/
- Run the R code in the book!
- You can also download it from the book website
- DataCamp
- First day survey
- Installing R
- Basic math in R

DataCamp

- You should have access by now
- Let me know if you don't
- Check your spam folder!
- Only 12 people have enrolled in the course
- First assignment due before class Thursday

Survey Results

- Concerns over flipped classroom format
- Worries about general computer skills
- Concerns about programming in general and R specifically
- Plans to ask lots of questions
- Math anxiety
- Desire to understand what tables/figures actually mean
- Excitement to learn data skills

Installing R

- Download R
- https://cran.r-project.org/
- Download RStudio
- https://www.rstudio.com/products/rstudio/download/

Basic R: Math

You can use R as an overpowered calculator

$$
3+2
$$

```
## [1] 5
```

In addition to addition, R understands subtraction
3-2
\#\# [1] 1
multiplication
$3 * 2$
\#\# [1] 6
and division
3 / 2
\#\# [1] 1.5

Basic R: Functions

You can also get fancier with exponentiation 3^2

```
## [1] 9
```

and roots
sqrt(3)
\#\# [1] 1.732051
this last one is a function R has lots of functions that you'll come to know and love

Basic R: Vectors

We can use the c () function to concatenate (combine) two numbers into a vector
$c(3,2)$
\#\# [1] 32
a vector can be made out of any number of elements c (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

\#\# [1] | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Basic R: Objects

We can assign any number to an object using the assignment operator <-

```
x <- 3
y <- 2
```

once we've assigned a number to a object, we can access it any time by using the object name x

```
## [1] 3
```

y
\#\# [1] 2

Basic R: Objects

Object names and can letters and numbers

```
spring2019 <- 1
```

Object names cannot start with a number 2019spring <- 1

```
## Error: <text>:1:5: unexpected symbol
```

\#\# 1: 2019spring
\#\#

You can use special characters like _ or .

```
spring_2019 <- 1
```

but they can't contain operators like,,+- , $^{\wedge}$, or !
spring-2019 <- 1
\#\# Error in spring - 2019 <- 1: object 'spring' not found

Basic R: Data types - numbers

Everything we've done so far as used numbers. R has multiple data types, of which numbers are just one. You can use the class() function to identify the data type of any object
class (x)
\#\# [1] "numeric"
You can also do this for numbers you haven't assigned to an object
class (3)
\#\# [1] "numeric"

Basic R: Data types - text

If something isn't a number, it's probably a string. Strings are how computers store and read text

```
' UNC '
## [1] "UNC"
```

Notice the quotes around UNC in the console output! You can use single or double quotes

```
"Chapel Hill"
```

\#\# [1] "Chapel Hill"
but you can't mix them
"North Carolina'
\#\# Error: <text>:1:1: unexpected INCOMPLETE_STRING
\#\# 1: "North Carolina'
\#\#

Basic R: Data types - logicals

The last data type you need to know are logicals. These represent true and false in the logical sense

TRUE

\#\# [1] TRUE
You can also use T and F to shorten them
F
\#\# [1] FALSE
You will encounter logicals whenever you make a comparison between two objects
$3>2$
\#\# [1] TRUE

Vector math

You can do all the standard arithmetic operations between a vector and a scalar (an object with only one element)

```
z <- c(2, 4, 6, 8)
z / 2
```

\#\# [1] 12234

You can only perform operations between vectors if the length of the longer object is a multiple of the shorter one

```
c(1, 2) * z
```

\#\# [1] 24816

Notice how R cycles through the elements of $\mathrm{c}(1,2)$; the first element of the result is $1 \times 2=2$, the second is $2 \times 4=8$, the third is $1 \times 6=6$, and the fourth is $2 \times 8=16$.

Accessing vectors

You can access the elements of a vector individually using the [] square bracket operator

```
z [1]
## [1] 2
z[3]
## [1] 6
```

Once you do this, R treats the result like you typed in that number yourself. This means you can do math with specific elements of vectors
z[2] * 3
\#\# [1] 12
You can access multiple elements of a vector by combining square brackets with concatenation
$z[c(3,4)]$

R quirks

R doesn't care about spaces. In fact, it ignores them entirely
3+2
\#\# [1] 5
$3+2$
\#\# [1] 5

3+ 2
\#\# [1] 5
R is case sensitive
color <- 'blue'
Color
\#\# Error in eval(expr, envir, enclos): object 'Color' not four

Getting help

To find out what any function does in R , just type a question mark before the name of the function
?mean
Leaving notes to your future self, or someone who's grading your code, is super important. You can do this by writing comments. To write a comment, just use a \#; R ignores anything after the \# on a line
\# you can write comments on their own line mean(c(1, 2, 3)) \# or at the end of a line
\#\# [1] 2
\# 3 * 2 won't produce anything

Hands on with R

- Download today's R script from Sakai and open it up in RStudio

